If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-2x=89
We move all terms to the left:
3x^2-2x-(89)=0
a = 3; b = -2; c = -89;
Δ = b2-4ac
Δ = -22-4·3·(-89)
Δ = 1072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1072}=\sqrt{16*67}=\sqrt{16}*\sqrt{67}=4\sqrt{67}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4\sqrt{67}}{2*3}=\frac{2-4\sqrt{67}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4\sqrt{67}}{2*3}=\frac{2+4\sqrt{67}}{6} $
| 3(x+4)=2x1 | | 11y=8y+12 | | 6x-1x-7+5=13 | | 2x2+10x=16 | | 0.07x+(2850-0.15x)=2000 | | V=v-7 | | 130x+50=90x+90 | | 12+1/5(10x+15)=59 | | (V)x=(30-2x)(18-2x) | | 8^x=4.4 | | 5x-8x+9=-6(x+3) | | -8x+88=17x+7 | | (7x-9)°=(4x-3)° | | 5+3x=51 | | 2x-6-1x=-1 | | 65x+100=45x+180 | | 15y+105/3=15y/5 | | x-3(x+2)=(x+3)(x-2) | | a-17=20 | | x+-10=34 | | -1s-3=5s+21 | | 0.2(8x-4)=0.3(10-2x) | | 0.25=(x-8.6)/1.7 | | -3-(7x+5)+9x=x-8+3x+10 | | 7x-11+90+2x-7=180 | | X=(5x-17) | | (2t+1)(t+6)=(2t-3)(t+2) | | 3x2-16x-45000=0 | | 15=n | | X=(6x+1) | | 5x+20=-3x-7 | | 1/2(8x+72)+5=-3 |